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A theory is derived for the photophoretic motion of a small aerosol particle, whose radius is
much smaller than the wavelength of the light., The radiation pressure is taken into account;
the effects of the incomplete accommodation of the energy and momentum of the gas molecules
in collisions with the surface of the particle are also taken into account.

When illuminated, a spherical particle suspended in a gas experiences two forces: the radiation pressure
and the photophoretic force, which arises because of the interaction of the molecules of the surrounding gas
with the surface of the particle, which is heated nonuniformly by the light., The gas molecules reflected from
the hot side of the particle after an inelastic collision move faster than those reflected from the cold side; as
a result, the particle acquires a net momentum,

The motion of an aerosol particle in a light field was discovered by Ehrenhaft [1, 2]. Since the discovery,
this effect has been studied in many experiments (see the review in [3]). The development of high-power lasers
has stimulated further research in this field [4-7]. With laser radiation it is possible to achieve optical levita-
tion of particles in alr or vacuum, to accelerate electrically neutral particles to high velocities, and to sort
particles according to size,

Debay [8] and Rubinowicz [9] have taken up the theory of the forces acting on a spherical particle in a
light field. Rubinowicz [9] derived an equation for the photophoretic force acting on a spherical particle in an
extremely nonrigorous manner, from the Knudsen equation for the force acting between two heated plates. The
result is applicable only in the case of a small deviation of the surface temperature of the particle from the
gas temperature at infinity, and this result also ignores the fact that some of the molecules undergo specular
reflection at the surface. Furthermore, Rubinowicz [9] did not examine the velocity of the particle under the
influence of the photophoretic force, so that a final theory for photophoresis could not be worked out.

Below we derive rigorous expressions for the photophoretic force in the free-molecular regime for an
arbitrary surface temperature of the particle; we take into account the incomplete accommodation of the energy
and momentum of the gas molecules in collisions with the surface, We also take into account the influence on
the particle of the radiation pressure, and we derive the steady-state velocity.

1., Distribution of Absorbed Energy within a Sphere

Mie [10] has derived an exact solution for the problem of the distribution of the electromagnetic field
within a homogeneous spherical particle and in the space near the particle:
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Here the superscript "i" corresponds to the internal fields, while "e" refers to the external flelds Here

ki =k,N, ko =ky=27/A, N=n—inis the complex refractive index, A, is the light wavelength, ¢ l (z) =Yg (2) =
/nz w2

l/ o I +1/2(@), qal @)=Ly (z) = l/ ~ Hg +1/2#), J1+1/2 and Hy 44/, are the Bessel and Hankel functions,

P{i) is the associated Legendre polynomial, 6, =7 -0, and 6 is the angle between the radius vector and the

propagation direction of the light. The coefficients C; € and B; *© are given by

Ci= iNc; Cf = [, (0) ¥ (Np) — N (0) ¥, (Np)] ¢,
= iNb; Bi = [ (0) %, (Np) — N, (0) b1 (Np)] by,
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where p =k R. Below we will be concerned with enly particles whose radii are much smaller than the wave-
length of the incident radiation (p «1), so that Eqs. (1) and (2) simplify. We are primarily interested in the
two limiting cases of a weakly absorbing particle (®p<« 1) and a strongly absorbing particle (%p>1).

@)

In the case of a weakly absorbing particle, the asymptotic expressions for the functions £z and 3 for
p <1, #p« 1 are [10]
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In deriving Eq. (3) we assumed the incident wave to be unpolarized, and we averaged the expression for [E| 2
over the angle ¢. We see from (4) that the heat-source density, which is proportional to |E| 2, is distributed
nearly uniformly over the volume of the particle (®p<«1), More heat is evolved at the illuminated side of the
sphere (6;< v /2) than at the shaded side,

In the case of a strongly absorbing particle, the field penetrates a distance on the order of (kg ™! <R into
the sphere, and the absorption is essentially superficial. In the case %p>1, the asymptotic expression for
37 is [13]
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We see the exponent1a1 decay of the field into the interior of the particle typical of a strongly absorbing parti-
cle. It is interesting to compare (6) with the result obtained for a strongly absorbing particle of large size

(p «<1). On the shaded side of a large sphere there is no light absorption (|E| 2 =0), while for a small particle
the values of |E|2 on the illuminated and shaded sides are nearly the same (n«%. The absorption at the
shaded side of the sphere occurs because of diffraction and is particularly important for small particles (p<«1).

2. Solution of the Heat-Conduction Equation

We consider the case in which the radius of the particle is much smaller than the mean free path of the
gas molecules; in other words, we consider the free-molecular regime of the interaction of the gas with the
surface of the particle. In this case the distribution function of the gas molecules incident on the particle is
not distorted by those reflected from the particle:
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where n. and T, are the density of molecules and the gas temperature at infinity, and uis the velocity of the
particle, Here the superscript " ~ " indicates that the projection of the veloecity of the molecule onto the nor-
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mal to the surface, vy, is negative. We assume that a fraction g of the molecules are reflected from the sur-
face in a diffuse manner, with an isotropic Maxwell distribution, while the rest (1 -~ q) undergo specular re-
flection:

3/2 2
fr= an( 2£Tr ) exp [— ;:;r] +(1—4q)f [v— 2n(nv)], (®

where Ty =(1-7¥)Tw +yTg, and Tg is the surface temperature of the particle. The quantity q is usually called
the "momentum-accommodation coefficient,"” while v is the "energy-accommodation coefficient® [4], The
temperature distribution within the particle is determined from the solution of the steady-state heat-conduc-
tion equation

wAT; =divl = — 2nxk B (r, 9), (9)
where % is the thermal conductivity of the particle, 1= SL Re[E, H*] is the Poynting vector, B(r, 6) =|Er)|2/
¥ .

E}, and I=cE}/8r is the energy flux density in the incident electromagnetic wave. The boundary conditions
for Eq. (9) are the condition that the surface of the particle is impenetrable for the gas molecules and the con-
tinuity condition on the heat flux at the particle surface:
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The superseripts "+" and "-" in the integral indicate that the integration is to be earried out over the half-
spaces v, > 0 and v, <0.

Solving Eq. (9) with boundary conditions (10).and (11), we find the following equation for the surface tem-
perature of the particle: '
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x=r /R, Tg is the average surface temperature, and k, = 4J, is the absorption factor, which is equal to the
ratio of the energy absorbed per unit time to the energy flux incident on the geometric cross section of the
sphere. For most substances the second term in the denominator in (12) is much smaller than the first and

can be neglected.

3. Forces Exerted on a Particle in a Light

Field. Velocity

The force exerted on the particle by the gas is equal to the resultant momentum transferred to the par-
ticle by the gas molecules which collide with the surface of the particle in a unit time:
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where y=cos 6, po=nekTsx is the gas pressure at infinity, and e, Is the unit vector along the light-propaga-
tion direction. In deriving Eq. (14) we made use of (7), (8), and (10), and we assumed u < }'2 kT ./m. The first
term is the photophoretic force exerted on the immobile particle, and the second term is the drag force. We
see from (14) that if the temperature of the illuminated part of the sphere (-1<y < 0) is higher than that of the
shaded part the photophoretic force is directed along the z axis (this is positive photophoresis). In the opposite
case, the force is directed opposite the incident radiation (negative photophoresis). Substituting the solution of
heat-conduction equation (12) into (14), we find the photophoretic force to be
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. e,
Fp = — AR qVIR], —— e . (15)
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The radiation pressure is [8, 11}
Frp = Ik R, , (16)

where k., =kg +k; —qq is the radiation-pressure factor, and kg and k, are the absorption and scattering fac-
tors. The quantity k, is given by Eq. (13); ke and qg are given by the following equations [11]:
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Let us consider in more detail the cases of weakly and strongly absorbing particles.

I. Weakly Absorbing Particle, To derive an equation for the photophoretic force, we substitute Egs. (12),
(9), and (4) into (15):

i N .
Fp= R'p. qu,ﬁ———n‘koez (1 — —‘“5)—,*) , (19)
30%, 1 T.1. 3 oNi:
_ 24nxp -
a” g ppe ' VP TR (20)

These equations are found by substituting Eqs. (2) into (13), (16), (17), and (18) and using (3) and (4). Withq=1
and Tg =T, Eq. (19) is the same as the equation derived for the photophoretic force in [9]. We see from Eq.

(19) that the photophoretic force acting on a small, weakly absorbing particle always acts along the radiation-
propagation direction (positive photophoresis). Setting the total force acting on the particle equal to zero, and
using (16), (19), and (20), we find the steady-state velocity to be

. /“'2?“' IkaRquYnzk(,(l T a)e, (1 . 5 _ ) , 21)
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If o «1, the velocity is proportional to the cube of the radius of the particle, so that light can be used to
sort the particles of a polydisperse aerosol according to size. I a> 1, the velocity is proportional to the first
power of the radius, and the sorting is less efficient,

II. Strongly Absorbing Particle, Substituting Egs. (2), (3), (5), and (6) into (13), (16)-(18), we find

brn bn ., 14, (22)

P—ﬁ.Nz fg T

The condition for strong absorption (vp >1) in the case of small particles (p «1) is usually satisfied only
for metals with a high electrical conductivity, We know that the heat in metals is transferred by free electrons,
so that metals which are good conductors have a high thermal conductivity, The photophoretic forceis inversely
proportional to the thermal conductivity, and, as estimates show, this force is always much smaller than the
radiation-pressure force for metals. Accordingly, we can find the steady-state velocity of the particles by
setting the sum of the radiation-pressure force and the drag force equal to zero:

/ 2akT I @3)

u = 3lkpe, l/ )

2p,, (8+qn ] T.7.)

We see from (23) that the velocity of the particle under the influence of the radiation pressure is inversely
proportional to the gas pressure, in agreement with experiment [2]. Ehrenhaft [2] studied the motion of a silver
sphere illuminated by focused light from an intense lamp having a broad radiation spectrum with a maximum at
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A,=0.7 1074 em. Near this wavelength the complex refractive index of silver is [12] N =0.05~-4i. For esti-
mates we assume I= 0.84 x 108 W/cm R =6Xx10" 6em T =293°K, #; =4.2 J/(cm- sec - deg), q=0.8, ¥ =0.8,
Peo =108 dyn/cm? Substituting these values into Egs. (22) 13), (16), and (23), we find kr =0.4 >k, , Tg =303°K,
Frp=1.27 x107!!dyn, and u =1.2 x1073 cm/sec. The experimental value is u =2,1 x10~ cm/sec The appar-
ent reasons for the discrepancy are the nonmonochromatic nature of the light source and the circumstance that
the conditions prevailing in the experiments were p~1, R/A =1 rather than p«1, R/A« 1, as we have assumed
(for air, A =6 x107% cm).

NOTATION

r, 6, ¢, spherical coordinates; w, light frequency; k,, wave vector; A, light wavelength; N=n—i%, com-
plex refractive index; J; + /z(z), Bessel function; Hy + s»(z), Hankel function; 6, angle between radius vector
and light-propagation direction; P';/, associated Legendre polynomial; A, mean free path of gas molecules;n,,,
density of gas molecules at infinity; T, gas temperature at infinity; m, mass of gas molecule; q, momentum-
accommodation coefficient; ny, density of gas molecules at the surface of the particle; Tg, surface tempera-
ture; n, unit vector normal to the surface; f~, £+, distribution functions of the incident and reflected mole-
cules; %, thermal conductivity of the particle; Tj, temperature within the particle; I, Poynting vector; I,
energy flux density of radiation; R, radius of particle; k,, absorption factor; Fp, photophoretic force; Fq, drag
force; pw, gas pressure at infinity; u, velocity of particle; Frp» radiation-pressure force; Ky ps radiation-pres-
sure factor; k,, scattering factor.
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